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PART I 

September 2, 2020 11:00 a.m. – 3:00 p.m. 

Do any four problems. Each problem is worth 25 points. 

Start each problem on a new sheet of paper (because different 

faculty members will be grading each problem in parallel). 

Be sure to write your Qualifier ID (“control number”) at the top of 

each sheet — not your name! — and turn in solutions to four 

problems only.  (If five solutions are turned in, we will only grade 

# 1 - # 4.) 

At the end of the exam, when you are turning in your papers, 

please fill in a “no answer” placeholder form for the problem that 

you skipped, so that the grader for that problem will have 

something from every student. 

You may keep this packet with the questions after the exam. 



Problem I.1

One end of a uniform thin rod, of length L and mass M, is attached to the end of a string,
of length ` and negligibly small mass, whose other end is fastened to the ceiling. The �gure
shows that this system at a particular instant while it is oscillating in a plane after being
slightly displaced from equilibrium. The con�guration of the system at any time can be
described by the angle θ of the string from the vertical and the angle φ of the rod from the
vertical. Friction forces are negligible, and the magnitude of the gravitational acceleration
is g.

(a) [7 points] Find the Lagrangian of this system

in terms of the angles θ and φ and their time
derivatives. Do not yet make any small-angle
approximations.
Reminder: The moment of inertia of a uniform
thin rod of massM and length L about an axis
perpendicular to the rod through the center of
the rod, is (1/12)ML2.

(b) [6 points] Now make the small-angle approximation, which we will use hereafter,
and derive the equations of motion for the [now small] angles θ and φ and their time
derivatives.

(c) [8 points] Consider the special case in which L = (3/2)`. What then are the frequen-
cies of the normal modes of oscillation of this system? Express these frequencies in
terms of g and ` only.

(d) [4 points] Which of these frequencies corresponds to that of the normal mode illus-
trated qualitatively by the �gure? Explain brie�y the reasoning behind your choice.



Problem I.2

Using cylindrical coordinates, where r is the radial coordinate, φ is the azimuthal coor-
dinate, and z is the axial coordinate, consider a cylindrical vacuum-�lled cavity of radius a
and length `, bounded by perfectly conducting walls at z = 0, z = `, and r = a. We seek
time-varying solutions for the electric �eld ~E and the magnetic �ux density ~B within the
cavity (r ≤ a, 0 ≤ z ≤ `) with the property that they do not depend on either z or φ.

(a) [5 points] Show that such solutions must have a ~B-�eld that is purely in the φ-direction

( ~B = Bφ(r, t)φ̂, where φ̂ is a unit vector in the φ-direction), and an ~E-�eld that is purely

in the z direction ( ~E = Ez(r, t)ẑ, where ẑ is a unit vector in the z-direction).

(b) [5 points] Find a wave equation satis�ed by Ez(r, t).

(c) [6 points] Now assume that the time dependence of the �elds is sinusoidal and pro-
portional to e−iωt. Find a di�erential equation for the spatial dependence of Ez; that
is, taking Ez(r, t) = e−iωt Ẽz(r), �nd a di�erential equation for Ẽz(r). Specify the
boundary condition on Ẽz(r).

(d) [6 points] Invoking the boundary conditions, give the possible solutions for Ẽz(r);
obtain and discuss a condition satis�ed by the possible frequencies of oscillation ω (see
the �Given Information� for a reminder regarding Bessel functions).

(e) [3 points] Sketch plots of Ẽz(r) and B̃φ(r) vs. r for the solution with the second lowest
non-zero frequency (where Bφ(r, t) = e−iωt B̃φ(r)).

Given Information

In cylindrical coordinates,
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Bessel's equation of integer order n (n = 0, 1, 2, . . .) is
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)
f(u) = 0, (2)

which has two independent solutions conventionally denoted Jn(u) and Yn(u), where Jn and
Yn are called the nth-order Bessel functions, having J0(0) = 1, Jn(0) = 0 for n ≥ 1, and
Yn(0) =∞.



Problem I.3

First consider a classical ideal gas at temperature T consisting of N molecules and initially
con�ned in a volume Vi. Then the gas is allowed to expand to a �nal volume Vf in two
di�erent ways:

(a) [5 points] Free expansion. The gas is thermally insulated from its environment and
experiences free irreversible expansion into a vacuum. Calculate the entropy change of
the gas ∆Sgasirr = Sf −Si by comparing the number of accessible states before and after
the expansion.

(b) [5 points] Isothermal expansion. The gas is in thermal contact with a reservoir of
temperature T and experiences a slow reversible quasistatic expansion, e.g. produced
by a slow-motion piston that limits the gas volume. Calculate the work W done on
the gas in this process, the change ∆U = Uf −Ui of the internal energy of the gas, and
the heat Q transferred to the gas from the environment. Calculate the entropy change
of the gas ∆Sgasrev = Sf − Si in this reversible process by using the formula ∆S = Q/T .
Compare your answers for Sgasirr and ∆Sgasrev . Are the two results the same or di�erent?
Explain why.

(c) [5 points] What are the entropy changes in the environment for these two cases: ∆Senvirr

and ∆Senvrev ? What are the total entropy changes in the gas and the environment for
these two cases: ∆Stotirr = ∆Sgasirr + ∆Senvirr and ∆Stotrev = ∆Sgasrev + ∆Srevirr ? Are ∆Stotirr and
∆Stotrev the same or di�erent? Explain why.

(d) [5 points] Now consider a non-interacting degenerate Fermi gas made of N spin-1/2
fermions each of mass m and initially con�ned in a volume Vi at zero temperature
T = 0. Calculate the Fermi momentum pF , the Fermi energy EF , and the energy per
particle U/N . Express U/N in terms of EF .

(e) [5 points] This Fermi gas is thermally insulated from its environment and experiences
free irreversible expansion into a vacuum to a �nal volume Vf . Assume that Vf is
su�ciently large so that the Fermi gas becomes non-degenerate, i.e. classical, and is
ideal. Calculate the �nal temperature Tf of the gas after the expansion. Express Tf in
terms of EF obtained above.



Problem I.4

According to recent models of strong interactions based on quantum chromodynamics, a
strongly interacting particle and its antiparticle may combine to create an object consisting
primarily of gluons and referred to as a glueball (G). One model predicts a glueball with rest
mass M = 1.90 GeV/c2. Take the proton rest mass to be 940 MeV/c2. If you choose to do
your derivations in units with c = 1 in this problem, you should include c in the units of any
numerical answer (e.g., GeV/c2 for a mass.
SPECIAL NOTE: Since using smart phones is not allowed and distributing reg-
ular calculators is not feasible these days, please do the numerical problems by
1) �nding the equation for the solution using variables, 2) rewriting that equa-
tion with the appropriate numbers. Include the units of all these numbers and
that of the answer. 3) If you could calculate the answer and write it in scienti�c
notation, what would be the power of 10?

Figure 1: Accelerator Modes

(a) Suppose you wanted to propose an experiment at a pp̄ collider to detect the reaction
p + p̄ → G (proton plus antiproton combine to create a glueball). In this collider
protons with a sharply de�ned energy are circulated in one ring and anti-protons of
the same energy in another. They are then extracted in a collision region in which
they approach each other head-on with equal energies from opposite directions. See
Fig. A above.

[10 points] At what proton momentum would you look for this reaction to

occur? At what total energy?

(b) Another way to make this reaction take place is to use a single ring accelerator and
have accelerated particles hit a stationary target (see Fig. B above). Suppose you
accelerate antiprotons and have them hit a stationary target of ionized hydrogen.

[15 points] At what anti-proton momentum would you look for the reaction

to occur? At what total energy?



Problem I.5

Wave propagation involves the interplay of a restoring force and the inertia of the medium.
For waves on the surface of water, the external restoring force comes from gravity, while
the inertia arises from the mass density of the water. If the wavelength is longer than a few
centimeters, the only signi�cant internal forces come from pressure gradients, since the e�ects
of surface tension and viscosity are negligible. For small amplitudes these waves satisfy a
linear equation. In this problem you will deduce their dispersion relation.

The �ow in these waves is irrotational (∇×v = 0), so the velocity �eld v is the gradient
of a scalar velocity potential Φ, i.e. v = ∇Φ. Let (x, y, z) be Cartesian coordinates, with
y corresponding to the vertical position, y = 0 being the undisturbed level of the water
surface. Consider in this problem a wave with velocity potential Φ(x, y, t), propagating in
the x̂ direction with wavenumber k, and with angular frequency ω. The velocity of the �uid
will depend on the depth y, and the wave amplitude is independent of z.

(a) [6 points] If the depth h of the body of water is su�ciently large compared to the
wavelength, then the depth plays no role in the wave properties. Such waves are
called �deep water waves,� and the only parameters of the system that might enter the
dispersion relation ω(k) are the acceleration of gravity g, the mass density of water
ρ. Using dimensional analysis, determine the form of the dispersion relation for deep
water waves, up to an unknown dimensionless constant. If you �nd that g or ρ does
not enter the dispersion relation, give a physical explanation why not.

(b) [3 points] Assuming the y dependence factors out, as Φ(x, y, t) = G(y)F (x, t), write
out F (x, t) for the given wave.

(c) [4 points] Water is nearly incompressible. Explain why this implies that the velocity
potential satis�es Laplace's equation, ∇2Φ = 0.

(d) [6 points] Use the fact that Φ satis�es Laplace's equation to determine the form of
the function G(y) for the case of deep water waves. Note that the �uid velocity must
vanish at great depths.

(e) [3 points] For small amplitude waves and constant atmospheric pressure on the surface
of the water, the velocity potential on the surface satis�es the equation ∂2t Φ = −g∂yΦ.
Use this surface boundary condition, together with your previous results, to determine
the dispersion relation for deep water waves. Compare this dispersion relation with
the one you obtained using dimensional analysis in part (a).

(f) [3 points] Suppose now that the body of water has a constant depth h that is not
e�ectively in�nite. Determine the function G(y), using the appropriate boundary con-
dition at the bottom. (This can be used to �nd how the dispersion relation depends
on h, but you are not asked to do so.)
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