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Do any four problems. Each problem is worth 25 points. 

Start each problem on a new sheet of paper (because different 

faculty members will be grading each problem in parallel). 

Be sure to write your Qualifier ID (“control number”) at the top of 

each sheet — not your name! — and turn in solutions to four 

problems only.  (If five solutions are turned in, we will only grade 

# 1 - # 4.) 

At the end of the exam, when you are turning in your papers, 

please fill in a “no answer” placeholder form for the problem that 

you skipped, so that the grader for that problem will have 

something from every student. 

You may keep this packet with the questions after the exam. 



Problem II.1

Consider the problem of a heavy quark-antiquark bound state. Let the Hamiltonian be
written, in the CM system, in a nonrelativistic form

H =
~p2

2µ
+ V (~r), (1)

where ~r = ~rquark − ~rantiquark and µ is the reduced mass of the quark and antiquark pair.

(a) [10 points] Derive a relationship between the average kinetic energy and the average
potential energy for the bound state. (Hint: Evaluate d

dt
〈~r · ~p〉).

(b) [5 points] The Feynman-Hellmann Theorem states that if the Hamiltonian H depends
on a parameter λ, H = H(λ), and if |ψ(λ)〉 is an eigenstate of H(λ),

H(λ)|ψ(λ)〉 = E(λ)|ψ(λ)〉, (2)

then
∂

∂λ
E(λ) =

〈
ψ(λ)

∣∣∣∣( ∂

∂λ
H(λ)

)∣∣∣∣ψ(λ)〉 (3)

Prove the theorem.

(c) [6 points] Suppose
V (r) = V0 ln(r/r0) (4)

Deduce the dependence of the bound state energies En on the reduced mass µ.

(d) [1 points] From your results in (c) what, if anything, can you say about the dependence
of En − Em on the reduced mass µ. (Here n and m refer generically to the quantum
numbers of the bound states.)

(e) [3 points] Estimate the radius of the ground state wavefunction, up to an unspecified
factor of order unity.



Problem II.2

Consider a quantum particle of mass m in a potential

V (x) =
mω2

2
x2 + cx3. (1)

We �rst consider the case with c = 0, and then add the x3 term using perturbation theory.

(a) [4 points] What are the energy levels for the particle in the potential V (x) when
c = 0?

(b) (i) [4 points] For what values of n and n′ is the matrix element 〈n′|x3|n〉 between the
unperturbed energy eigenstates nonzero? (n = 0 labels the ground state.)

(ii) [4 points] Write explicit expressions for the nonzero matrix elements 〈n′|x3|n〉.

(c) [4 points] What is the correction to the energy levels of Part (a) in �rst-order pertur-
bation theory, where cx3 is the perturbation?

(d) [5 points] Find the second-order correction to the ground state energy.

(e) [2 points] For the potential V (x) of (1), the particle actually has no ground state. Ex-
plain why not, and describe the conditions under which it nevertheless makes physical
sense to use perturbation theory for the ground state.

(f) [2 points] What condition on c should be satis�ed if second-order perturbation theory
is to give a good approximation for the ground state?

You might �nd helpful the equation

〈n′|x|n〉 =

(
~

2mω

)1/2 (√
n δn′,n−1 +

√
n+ 1 δn′,n+1

)
where |n〉 and |n′〉 are orthogonal eigenstates of the unperturbed Hamiltonian.



Problem II.3

A particle of mass m and energy E = ~2k2/2m scatters from a spherically symmetric poten-
tial,

V (r) = −V0 for r < R, V (r) = 0 for r > R. (1)

In this problem we assume that the particle has very low energy E, such that kR� 1.

(a) [8 points] Assuming that the strength V0 is not sufficient to support a bound state,
find the cross section σ in the limit E → 0, as a function of the remaining parameters,
V0, R, m, and ~.

(b) [4 points] As the depth of the potential, V0, is increased while keeping the energy E
fixed, the total cross section behaves as in the Figure below.

V0

σ

V1 V3V2

Find the value of the total cross section at the maxima, where V0 = V1 and V0 = V3,
in terms of m, E, and ~.

(c) [7 points] Determine approximately the values V1 and V3 at which the first two maxima
occur. Hint: Consider the values of V1 and V3 in the limit of zero energy.

(d) [6 points] What is the approximate value of V2 at which the cross section is zero?
The solution involves a transcendental equation. Sketch and label a graph showing the
location of the relevant root, and give explicit upper and lower bounds for V2.

Possibly useful formula connecting the amplitude fl and the phase δl in the scattering channel
with the orbital angular momentum l

fl =
eiδl sin δl

k
.



Problem II-4

Two particles interact via a spin-spin Hamiltonian AS1 · S2 where A is a positive constant
and S1,2 are the spin angular momenta of the two particles. Particle 1 has spin 1 and a
magnetic moment of µ1 = −µB

~ S1, whereas Particle 2 has spin 1
2
and magnetic moment zero.

(a) [6 points] What are the energy levels of the system and the degree of degeneracy of
the levels? Give a detailed derivation of the possible results.

(b) [8 points] Write a basis of normalized energy eigenstates corresponding to the different
energy levels in part (a) as linear combinations of products of single-particle spin states.

(c) [7 points] If the system is placed in a magnetic field of strength B aligned with the z-
axis, what then are the approximate energy eigenstates and eigenvalues if B � A~2/µB
? Use the product of single particle spin states as before.

(d) [4 points] Are any of the levels exactly linear in B for all B > 0 ? If not, explain why
not. If so, which levels are these and what are their energies as a function of B ?

Possibly useful formula: J±|j,m〉 =
√
j(j + 1)−m(m± 1)|j,m± 1〉.



Problem II.5

Consider a free-electron gas, with N electrons and dispersion relation ε = (~|k|)2/2m at
temperature T=0, in d = 3 or d = 2 dimensions, contained in a volume V = L3 or area
A = L2, respectively, so a cube or a square.

(a) [6 points] The number of single-particle energy eigenstates (counting all degeneracies)
between ε and ε+dε is G(ε) dε, where G(ε) is known as the density of states. Show that
G(ε) satis�es

G(ε) ∝ εα , (1)

�nding the value of α for d = 3 and for d = 2. Assume throughout that L is su�ciently
large that �nite-size e�ects can be ignored. Ignore numerical factors and dimensionful
constants, since you seek only the ε dependence ofG(ε). (Hint : With periodic boundary
conditions each single-particle state can be taken to have a de�nite wave vector.)

(b) [8 points] i) (1) What are the units of G(ε)?

(2) Explain why the proportionality relation (1) can be written more speci�cally as the
following equation:

G(ε) =
BNεα

ε α′
F

, (2)

where εF is the Fermi energy and B is a numerical constant. Specify how the numerical
value of α′ is related to that of α. (Note: To answer this question one does not need
to determine εF in terms of the parameters of the problem.)

ii) Find the value of B for d = 3 and for d = 2.

iii) For N electrons, how does εF depend on N and V , and on N and A for d = 2?
[Again, prefactors are not needed, just the proportionality with the correct exponents.]

For graphene (a single planar sheet of graphite) near the Dirac points, the electronic disper-
sion relation can be written ε = ~vs|k| (where k is measured from a Dirac point, a fact you
can ignore here).

(c) [6 points] i) Show that the density of states G(ε) is still proportional to εα/ε α′
F , and

�nd the new value of α for d = 2.

ii) Does the relationship of α′ to α change from part 2? If yes, how? If not, why not?

(d) [5 points] The total low-temperature heat capacity of a metal with �xed volume V [or
area A] and �xed N is known to behave as a power-law of T . Give a quick argument
to show what this power is. It may be helpful to sketch the change in the Fermi-Dirac
distribution when T increases slightly from 0. (Use of the Sommerfeld expansion is not
intended!)
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